HEC FSIO Workshop HECURA Research Program

August 7, 2008

Walt Ligon
Clemson University

Clemson HEC Filesystem Research

- Two teams
 - Research team
 - ECE Dept
 - HECURA
 - Simulation, metadata, semantics
 - Development team
 - CCIT
 - ACS
 - Server-to-server, caching, security

Project Objectives

- Develop an extensible parallel file system simulation tool
- Study
 - Server-to-server communication
 - Run-time configurable semantics/caching
- Address
 - Scalable metadata
 - Scalable small and unaligned access

Program Areas Addressed

- Scalable metadata operations
- Scalable small and unaligned operations
- I/O middleware
- Active caching
- Server to server communication
- Simulation of I/O, file, and storage systems

Progress To Date

- Development of HECIOS simulator done
- Tuning and validation
- Scalable metadata
 - Server-to-server communication
 - Collective communication
- Client caching
 - Shared between threads
 - Data layout aware

HECIOS Architecture

Trace Processor Cache Server Request Processor

OS Cache

FsSim

Disk Model

Request

Scheduler

08/05/08

BMI/INET

Traces

- Developed 2 trace formats
 - SHTF (the serial HECIOS trace format)
 - PHTF (the parallel HECIOS trace format).
 - Both are constructed from Itrace traces
- Successfully used traces from the LANL-trace repository
- Used the LANL Trace library to trace BT-IO and Flash-IO benchmarks

Issues in Trace Library

- Uses Itrace for tracing
 - Modified Itrace regular expressions to capture the fortran MPI calls in BT-IO
- LTrace cannot output more than 5 parameters
 - Created a custom Itrace.conf file to support big MPI calls
- Ltrace won't dereference pointers
 - Wrote a patch for mpich2 that will output those parameters in printf calls
 - Fortran is pass by reference, every call just gives address
 - Ideally, might need to fork Itrace and add this ability

Tuning and Validation

Tuning

- Instrumented PVFS
 - Server components (request process, trove, disk time, etc.)
 - Client components (request setup, network overhead, etc.)

Validation

- Simple applications single server (cp, rm, etc.)
- Phil Carns' prototype results as a comparison
 - Server-to-server/collective communications

Scalable Metadata Server-to-Server Communication

Traditional Metadata Operation

Scalable Metadata Operation

PVFS/TCP Create Time

PVFS/GM Create Time

HECIOS Create Times

Middleware Managed Cache Weakened Consistency

Middleware Cache Experiments

- Multi-core shared cache
 - cores/cache
 - concurrent access issues
 - size/associativity
- File view based cache
 - FS access efficiency
 - coherency effects
 - combining views

Development Activities

- Server-to-server implementation
 - Metadata operations
 - Redundancy
- Capability-based security
 - External authentication (pam, kerberos, federated)
 - "Unix-level" security
- Middleware caching

New Directions

- The River Model
 - Environment support for building applications
 - Component based
 - Automated memory and IO management
 - Based on DeBardeleben's Coven
 - Modified for script-based applications
 - Brings HEC results back to GP computing